Absolute exponential stability of a class of continuous-time recurrent neural networks

نویسندگان

  • Sanqing Hu
  • Jun Wang
چکیده

This paper presents a new result on absolute exponential stability (AEST) of a class of continuous-time recurrent neural networks with locally Lipschitz continuous and monotone nondecreasing activation functions. The additively diagonally stable connection weight matrices are proven to be able to guarantee AEST of the neural networks. The AEST result extends and improves the existing absolute stability and AEST ones in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays

This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with addi...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Global Stability of a Class of Continuous-Time Recurrent Neural Networks

This paper investigates global asymptotic stability (GAS) and global exponential stability (GES) of a class of continuous-time recurrent neural networks. First, we introduce a necessary and sufficient condition for existence and uniqueness of equilibrium of the neural networks with Lipschitz continuous activation functions. Next, we present two sufficient conditions to ascertain the GAS of the ...

متن کامل

Global Exponential Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays

This brief presents new theoretical results on the global exponential stability of neural networks with time-varying delays and Lipschitz continuous activation functions. These results include several sufficient conditions for the global exponential stability of general neural networks with time-varying delays and without monotone, bounded, or continuously differentiable activation function. In...

متن کامل

Absolute Exponential Stability of a Class of Neural Networks

This paper investigates the absolute exponential stability (AEST) of a class of neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that T − is an H -matrix with nonnegative diagonal elements, then the neural system is AEST.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2003